Getting Started

Add the latest web3j version to your project build configuration.


Java 8:





Java 8:

compile ('org.web3j:core:3.4.0')


compile ('org.web3j:core:3.3.1-android')

Start a client

Start up an Ethereum client if you don’t already have one running, such as Geth:

$ geth --rpcapi personal,db,eth,net,web3 --rpc --rinkeby

Or Parity:

$ parity --chain testnet

Or use Infura, which provides free clients running in the cloud:

Web3j web3 = HttpService(""));

For further information refer to Using Infura with web3j.

Instructions on obtaining Ether to transact on the network can be found in the testnet section of the docs.

When you no longer need a Web3j instance you need to call the shutdown method to close resources used by it.


Start sending requests

To send synchronous requests:

Web3j web3 = HttpService());  // defaults to http://localhost:8545/
Web3ClientVersion web3ClientVersion = web3.web3ClientVersion().send();
String clientVersion = web3ClientVersion.getWeb3ClientVersion();

To send asynchronous requests using a CompletableFuture (Future on Android):

Web3j web3 = HttpService());  // defaults to http://localhost:8545/
Web3ClientVersion web3ClientVersion = web3.web3ClientVersion().sendAsync().get();
String clientVersion = web3ClientVersion.getWeb3ClientVersion();

To use an RxJava Observable:

Web3j web3 = HttpService());  // defaults to http://localhost:8545/
web3.web3ClientVersion().observable().subscribe(x -> {
    String clientVersion = x.getWeb3ClientVersion();

Note: for Android use:

Web3j web3 = HttpService());  // defaults to http://localhost:8545/


web3j also supports fast inter-process communication (IPC) via file sockets to clients running on the same host as web3j. To connect simply use the relevant IpcService implementation instead of HttpService when you create your service:

// OS X/Linux/Unix:
Web3j web3 = UnixIpcService("/path/to/socketfile"));

// Windows
Web3j web3 = WindowsIpcService("/path/to/namedpipefile"));

Note: IPC is not available on web3j-android.

Working with smart contracts with Java smart contract wrappers

web3j can auto-generate smart contract wrapper code to deploy and interact with smart contracts without leaving the JVM.

To generate the wrapper code, compile your smart contract:

$ solc <contract>.sol --bin --abi --optimize -o <output-dir>/

Then generate the wrapper code using web3j’s Command Line Tools:

web3j solidity generate /path/to/<smart-contract>.bin /path/to/<smart-contract>.abi -o /path/to/src/main/java -p

Now you can create and deploy your smart contract:

Web3j web3 = HttpService());  // defaults to http://localhost:8545/
Credentials credentials = WalletUtils.loadCredentials("password", "/path/to/walletfile");

YourSmartContract contract = YourSmartContract.deploy(
        <web3j>, <credentials>,
        <param1>, ..., <paramN>).send();  // constructor params

Or use an existing contract:

YourSmartContract contract = YourSmartContract.load(
        "0x<address>|<ensName>", <web3j>, <credentials>, GAS_PRICE, GAS_LIMIT);

To transact with a smart contract:

TransactionReceipt transactionReceipt = contract.someMethod(

To call a smart contract:

Type result = contract.someMethod(<param1>, ...).send();

For more information refer to Solidity smart contract wrappers.


web3j functional-reactive nature makes it really simple to setup observers that notify subscribers of events taking place on the blockchain.

To receive all new blocks as they are added to the blockchain:

Subscription subscription = web3j.blockObservable(false).subscribe(block -> {

To receive all new transactions as they are added to the blockchain:

Subscription subscription = web3j.transactionObservable().subscribe(tx -> {

To receive all pending transactions as they are submitted to the network (i.e. before they have been grouped into a block together):

Subscription subscription = web3j.pendingTransactionObservable().subscribe(tx -> {

Or, if you’d rather replay all blocks to the most current, and be notified of new subsequent blocks being created:

Subscription subscription = catchUpToLatestAndSubscribeToNewBlocksObservable(
        <startBlockNumber>, <fullTxObjects>)
        .subscribe(block -> {

There are a number of other transaction and block replay Observables described in Filters and Events.

Topic filters are also supported:

EthFilter filter = new EthFilter(DefaultBlockParameterName.EARLIEST,
        DefaultBlockParameterName.LATEST, <contract-address>)
             .addSingleTopic(...)|.addOptionalTopics(..., ...)|...;
web3j.ethLogObservable(filter).subscribe(log -> {

Subscriptions should always be cancelled when no longer required:


Note: filters are not supported on Infura.

For further information refer to Filters and Events and the Web3jRx interface.


web3j provides support for both working with Ethereum wallet files (recommended) and Ethereum client admin commands for sending transactions.

To send Ether to another party using your Ethereum wallet file:

Web3j web3 = HttpService());  // defaults to http://localhost:8545/
Credentials credentials = WalletUtils.loadCredentials("password", "/path/to/walletfile");
TransactionReceipt transactionReceipt = Transfer.sendFunds(
        web3, credentials, "0x<address>|<ensName>",
        BigDecimal.valueOf(1.0), Convert.Unit.ETHER)

Or if you wish to create your own custom transaction:

Web3j web3 = HttpService());  // defaults to http://localhost:8545/
Credentials credentials = WalletUtils.loadCredentials("password", "/path/to/walletfile");

// get the next available nonce
EthGetTransactionCount ethGetTransactionCount = web3j.ethGetTransactionCount(
             address, DefaultBlockParameterName.LATEST).send();
BigInteger nonce = ethGetTransactionCount.getTransactionCount();

// create our transaction
RawTransaction rawTransaction  = RawTransaction.createEtherTransaction(
             nonce, <gas price>, <gas limit>, <toAddress>, <value>);

// sign & send our transaction
byte[] signedMessage = TransactionEncoder.signMessage(rawTransaction, credentials);
String hexValue = Numeric.toHexString(signedMessage);
EthSendTransaction ethSendTransaction = web3j.ethSendRawTransaction(hexValue).send();
// ...

Although it’s far simpler using web3j’s Transfer for transacting with Ether.

Using an Ethereum client’s admin commands (make sure you have your wallet in the client’s keystore):

Admin web3j = HttpService());  // defaults to http://localhost:8545/
PersonalUnlockAccount personalUnlockAccount = web3j.personalUnlockAccount("0x000...", "a password").sendAsync().get();
if (personalUnlockAccount.accountUnlocked()) {
    // send a transaction

If you want to make use of Parity’s Personal or Trace, or Geth’s Personal client APIs, you can use the org.web3j:parity and org.web3j:geth modules respectively.

Command line tools

A web3j fat jar is distributed with each release providing command line tools. The command line tools allow you to use some of the functionality of web3j from the command line:

  • Wallet creation
  • Wallet password management
  • Transfer of funds from one wallet to another
  • Generate Solidity smart contract function wrappers

Please refer to the documentation for further information.

Further details

In the Java 8 build:

  • web3j provides type safe access to all responses. Optional or null responses are wrapped in Java 8’s Optional type.
  • Asynchronous requests are wrapped in a Java 8 CompletableFutures. web3j provides a wrapper around all async requests to ensure that any exceptions during execution will be captured rather then silently discarded. This is due to the lack of support in CompletableFutures for checked exceptions, which are often rethrown as unchecked exception causing problems with detection. See the and its associated test for details.

In both the Java 8 and Android builds:

  • Quantity payload types are returned as BigIntegers. For simple results, you can obtain the quantity as a String via Response.getResult().
  • It’s also possible to include the raw JSON payload in responses via the includeRawResponse parameter, present in the HttpService and IpcService classes.